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Abstract—Peer code review has been found to be effective in
identifying security vulnerabilities. However, despite practicing
mandatory code reviews, many Open Source Software (OSS)
projects still encounter a large number of post-release security
vulnerabilities, as some security defects escape those. Therefore,
a project manager may wonder if there was any weakness
or inconsistency during a code review that missed a security
vulnerability. Answers to this question may help a manager
pinpointing areas of concern and taking measures to improve
the effectiveness of his/her project’s code reviews in identifying
security defects. Therefore, this study aims to identify the factors
that differentiate code reviews that successfully identified security
defects from those that missed such defects.

With this goal, we conduct a case-control study of Chromium
OS project. Using multi-stage semi-automated approaches, we
build a dataset of 516 code reviews that successfully identified
security defects and 374 code reviews where security defects
escaped. The results of our empirical study suggest that the are
significant differences between the categories of security defects
that are identified and that are missed during code reviews.
A logistic regression model fitted on our dataset achieved an
AUC score of 0.91 and has identified nine code review attributes
that influence identifications of security defects. While time to
complete a review, the number of mutual reviews between two
developers, and if the review is for a bug fix have positive impacts
on vulnerability identification, opposite effects are observed from
the number of directories under review, the number of total
reviews by a developer, and the total number of prior commits
for the file under review.

Index Terms—security, code review, vulnerability

I. INTRODUCTION

Peer code review (a.k.a. code review) is a software quality
assurance practice of getting a code change inspected by
peers before its integration to the main codebase. In addition
to improving maintainability of a project and identification
of bugs [3], [11], code reviews have been found useful
in preventing security vulnerabilities [12], [34]. Therefore,
many popular Open Source Software (OSS) projects such
as, Chromium, Android, Qt, oVirt, and Mozilla as well as
commercial organizations such as, Google, Microsoft, and
Facebook have integrated code reviews in their software de-
velopment pipeline [11], [50]. With mandatory code reviews,
many OSS projects (e.g., Android, and Chromium OS) require

each and every change to be reviewed and approved by
multiple peers [3], [50]. Although mandatory code reviews
are preventing a significant number of security defects [12],
[44], these projects still report a large number of post-release
security defects in the Common Vulnerabilities and Exposure
(ak.a. CVE) database'. Therefore, a project manager from
such a project may wonder if there was any weakness or
inconsistency during a code review that missed a security
vulnerability. For example, she/he may want to investigate:
i) if reviewers had adequate expertise relevant to a particular
change, ii) if reviewers spent adequate time on the reviews, or
iii) if the code change was too difficult to understand. Answers
to these questions may help a manager pinpointing areas of
concern and taking measures to improve the effectiveness of
his/her project’s code reviews in identifying security defects.

To investigate these questions, this study aims fo identify
the factors that differentiate code reviews that successfully
identified security defects from those that missed such defects.
Since code reviews can identify vulnerabilities very early in
the software development pipeline, security defects identified
during code reviews incur significantly less cost, as the longer
it takes to detect and fix a security vulnerability, the more
that vulnerability will cost [35]. Therefore, improving the
effectiveness of code reviews in identifying security defects
may reduce the cost of developing a secure software.

With this goal, we conducted a case-control study of
the Chromium OS project. Case-control studies, which are
common in the medical field, compare two existing groups
differing on an outcome [52]. We identified the cases and the
controls based on our outcome of interest, namely whether
a security defect was identified or escaped during the code
review of a vulnerability contributing commit (VCC). Using a
keyword-based mining approach followed by manual valida-
tions on a dataset of 404,878 Chromium OS code reviews,
we identified 516 code reviews that successfully identified
security defects. In addition, from the Chromium OS bug
repository, we identified 239 security defects that escaped code
reviews. Using a modified version of the SZZ algorithm [9]

Uhttps://cve.mitre.org/cve/



(RQ2):

followed by manual validations, we identified 374 VCCs
and corresponding code reviews that approved those changes.
Using these two datasets, we conduct an empirical study and
answer the following two research questions:

(RQ1): Which categories of security defects are more likely

to be missed during code reviews?

Motivation: Since a reviewer primarily relies on his/her
knowledge and understanding of the project, some cate-
gories of security defects may be more challenging to
identify during code reviews than others. The results
of this investigation can help a project manager in two
ways. First, it will allow a manager to leverage other
testing /quality assurance methods that are more effective
in identifying categories of vulnerabilities that are more
likely to be missed during code reviews. Second, a man-
ager can arrange training materials to educate developers
and adopt more effective code review strategies for those
categories of security vulnerabilities.

Findings: The results suggest that some categories of
vulnerabilities are indeed more difficult to identify during
code reviews than others. The identification of a vulnera-
bility that requires an understanding of a few lines of the
code context (e.g., unsafe method, calculation of buffer
size, and resource release) are more likely to be identified
during code reviews. On the other hand, vulnerabilities
that require either code execution (e.g., input validation)
or understanding of larger code contexts (e.g., resource
lifetime, and authentication management ) are more likely
to remain unidentified.

Which factors influence the identification of security
defects during a code review?

Motivation:

Insights obtained from this investigation can help a
project manager pinpoint areas of concern and take
targeted measures to improve the effectiveness of his/her
project’s code reviews in identifying security defects.
Findings: We developed a Logistic Regression model
based on 18 code review attributes. The model, which
achieved an AUC of 0.91, found nine code review
attributes that distinguish code reviews that missed a
vulnerability from the ones that did not. According to
the model, the likelihood of a security defect being
identified during code review declines with the increase
in the number of directories/files involved in that change.
Surprisingly, the likelihood of missing a vulnerability
during code reviews increased with a developer’s re-
viewing experience. Vulnerabilities introduced in a bug
fixing commit were more likely to be identified than those
introduced in a non-bug fix commit.

The primary contributions of this paper are:

« An empirically built and validated dataset of code reviews
that either identified or missed security vulnerabilities.

« An empirical investigation of security defects that es-
caped vs. the ones that are identified during code reviews.

e A logistic regression model to identify relative impor-

tance of various factors influencing identification of se-
curity defects during code reviews.

o An illustration of conducting a case-control study in the
software engineering context.

« We make our script and the dataset publicly available at:
https://zenodo.org/record/4539891.

Paper organization: The remainder of this paper is orga-
nized as follows. Section II provides a brief background on
code reviews and case-control study. Section III details our
research methodology. Section IV describes the results of our
case-control study. Section V discusses the implications based
on the results of this study. Section VI discusses the threats to
validity of our findings. Section VII describes related works.
Finally, Section VIII provides the future direction of our work
and concludes this paper.

II. BACKGROUND

This section provides a brief background on security vul-
nerabilities, code reviews, and case-control studies.

A. Security Vulnerabilities

A vulnerability is a weakness in a software component
that can be exploited by a threat actor, such as an attacker,
to perform unauthorized actions within a computer system.
Vulnerabilities result mainly from bugs in code which arise due
to violations of secure coding practices, lack of web security
expertise, bad system design, or poor implementation quality.
Hundreds of types of security vulnerabilities can occur in code,
design, or system architecture. The security community uses
Common Weakness Enumerations (CWE) [41] to provide an
extensive catalog of those vulnerabilities.

B. Code reviews

Compared with the traditional heavy-weight inspection pro-
cess, peer code review is more light-weight, informal, tool-
based, and used regularly in practice [3]. In addition to their
positive effects on software quality in general, Code review can
be an important practice for detecting and fixing security bugs
early in a software development lifecycle [34]. For example,
an expert reviewer can identify potentially vulnerable code
and help the author to fix the vulnerability or to abandon
the code. Peer code review can also identify attempts to
insert malicious code. Software development organizations,
both OSS and commercial, have been increasingly adopting
tools to manage the peer code review process [50]. A tool-
based code review starts, when an author creates a patch-set
(i.e. all files added or modified in a single revision), along with
a description of the changes, and submits that information to a
code review tool. After reviewers are assigned, the code review
tool then notifies selected reviewers regarding the incoming
request. During a review, the tools may highlight the changes
between revisions in a side-by-side display. The review tool
also facilitates communication between the reviewers and the
author in the form of review comments, which may focus on
a particular code segment or the entire patchset. By uploading
a new patchset to address the review comments, the author



can initiate a new review iteration. This review cycle repeats
until either the reviewers approve the change or the author
abandons. If the reviewers approve the changes, then the
author commits the patchset or asks a project committer to
integrate the patchset to the project repository.

C. Case-Control Study

Case-control studies, which are widely used in the medical
field, is a type of observational study, where subjects are
selected based on an outcome of interest, to identify factors
that may contribute to a medical condition by comparing those
with the disease or outcome (cases) against a very similar
group of subjects who do not have that disease or outcome
(controls) [31]. A case-control study is always retrospective,
since it starts with an outcome and then traces back to inves-
tigate exposures. However, it is essential that case inclusion
criteria are clearly defined to ensure that all cases included in
the study are based on the same diagnostic criteria. To measure
the strength of the association between a given exposure and
an outcome of interest, researches who conduct case-control
studies usually use Odds Ratio (OR), which represents the
odds that an outcome will occur given an exposure, compared
to the odds of the outcome occurring in the absence of that
exposure [52].

Although case control studies are predominantly used in the
medical domain, other domains have also used this research
method. In the SE domain, Allodi and Massaci conducted
case-control studies to investigate vulnerability severities and
their exploits [1]. In a retrospective study, where two groups
naturally emerge based on an outcome, the case-control study
framework can provide researchers guidelines in selecting
variables, analyzing data, and reporting results. We believe that
a case-control design is appropriate for this study, since we
are conducting a retrospective study, where two groups differ
based on an outcome. In our design, each of the selected cases
is a vulnerability contributing commit forming two groups:
1) cases—vulnerabilities identified during code reviews and 2)
controls —vulnerabilities escaped code reviews.

III. RESEARCH METHODOLOGY

Our research methodology focused on identifying vulner-
ability contributing commits that went through code reviews
and had its’ security defects either getting identified or es-
caping. In the following subsections, we detail our research
methodology.

A. Project Selection

For this study, we select the Chromium OS project for the
following five reasons— (i) it is one of the most popular OSS
projects, (ii) it is a large-scale matured project containing more
than 41.7 million Source Lines of Code (SLOC) [25]. (iii)
it has been conducting tool-based code reviews for almost a
decade, (iv) it maintains security advisories” to provide regular
updates on identified security vulnerabilities, and (v) it has

Zhttps://www.chromium.org/chromium-os/security-advisories

been subject to prior studies on security vulnerabilities [14],
[301, [38], [39], [43].

B. Data Mining

The code review repositories of the Chromium OS project
is managed by Gerrit? and is publicly available at: https:
//chromium-review.googlesource.com/. We wrote a Java ap-
plication to access Gerrit’s REST API to mine all the publicly
available code reviews for the project and store the data in
a MySQL database. Overall, we mined 404,878 code review
requests spanning March 2011 to March 2019. Using an
approach similar to Bosu et al. [10], we filtered the bot
accounts, using a set of keywords (e.g., ‘bot’, ‘CI’, ‘Jenkins’,
‘build’, ‘auto’, and ‘travis’) followed by manual validations,
to exclude the comments not written by humans. To identify
whether multiple accounts belong to a single person, we follow
a similar approach as Bird et al. [8], where we use the
Levenshtein distance between two names to identify similar
names. If our manual reviews of the associated accounts
suggest that those belong to the same person, we merge those
to a single account.

C. Building a dataset of cases (i.e. vulnerabilities identified
during code reviews)

We adopted a keyword-based semi-automated mining ap-
proach, which is similar to the strategy used by Bosu et
al. [12], to build a dataset of vulnerabilities identified during
code reviews. Our keyword-based mining was based on the
following three steps:

(Step 1) Database search: We queried our MySQL database
of Chromium OS code reviews to select review comments
that contain at least one of the 105 security-related keywords
(Table I). Bosu er al. [12] empirically developed and validated
a list of 52 keywords to mine code review comments asso-
ciated with the 10 common types of security vulnerabilities.
Using Bosu et al’s keyword list as our starting point, we added
additional 53 keywords to this list based on the NIST glossary
of security terms [27]. Our database search identified 7,572
code review comments that included at least one of these 105
keywords (Table I).

(Step I1l) Preliminary filtering: Two of the authors indepen-
dently audited each code review comment identified during the
database search to eliminate any reviews that clearly did not
raise a security concern. We excluded a review comment in
this step only if both auditors independently determined that
the comment does not refer to a security issue. To illustrate
the process let’s examine two code review comments with
the same keyword ‘overflow’. The first comment— “no check
for overflow here?” potentially raises a concern regarding an
unchecked integer overflow and therefore was included for
a detailed inspection. While the second comment —“I’'m not
sure but can specifying overflow: hidden; to a container hide
scroll bars?” seems to be related to Ul rendering and was
discarded during this step. This step discarded 6,235 comments

3https://www.gerritcodereview.com/



TABLE I
KEYWORDS TO MINE CODE REVIEWS THAT IDENTIFY SECURITY DEFECT

Vulnerability CWE ID Keywords*

Type

Race Condition 362 - 368 race, racy

Buffer Overflow 120 - 127 buffer, overflow, stack, strcpy, str-
cat, strtok, gets, makepath, splitpath,
heap, strlen

Integer 190, 191, 680 integer, overflow, signedness, width-

Overflow ness, underflow

Improper 22, 264, 269, | improper, unauthenticated, gain ac-

Access 276, 281 -290 cess, permission, hijack, authenti-
cate, privilege, forensic, hacker, root

Cross Site Script- | 79 - 87 cross site, CSS, XSS, malform,

ing (XSS)

Denial of 248, 400 - 406, | denial service, DOS, DDOS, crash

Service (DoS) / | 754, 755

Crash

Deadlock 833 deadlock

SQL Injection 89 SQL, SQLI, injection

Format String 134 format, string, printf, scanf

Cross Site 352 cross site, request forgery, CSREF,

Request Forgery XSREF, forged

Encryption 310, 311, 320- | encrypt, decrypt, password, cipher,

327 trust, checksum, nonce, salt

Common - security, vulnerability, vulnerable,

keywords hole, exploit, attack, bypass, back-
door, threat, expose, breach, vio-
late, fatal, blacklist, overrun, inse-
cure, scare, scary, conflict, trojan,
firewall, spyware, adware, virus, ran-
som, malware, malicious, risk, dan-
gling, unsafe, leak, steal , worm,
phishing, cve, cwe, collusion, covert,
mitm, sniffer, quarantine, scam,
spam, spoof, tamper, zombie

*Approximately half of the keywords in this list are adopted from the prior

study of Bosu et al. [12]. Keywords in italic are our additions to this list.

and retained the remaining 1,337 comments for a detailed
inspection.

(Step IIlI) Detailed Inspection: In this step, two of the
authors independently inspected the 1,337 review comments
identified from the previous step, any subsequent discussion
included in each review, and associated code contexts to
determine whether a security defect was identified in each
review. If any vulnerability is confirmed, the inspectors also
classified it according to the CWE specification [41]. Similar
to Bosu et al. [12], we considered a code change vulnerable
only if: (a) a reviewer indicated potential vulnerabilities, (b)
our manual analysis of the associated code context found the
code to be potentially vulnerable, and (c) the code author either
explicitly acknowledged the presence of the vulnerability
through a response (e.g., ‘Good catch’, ‘Oops!’) or implicitly
acknowledged it by making the recommended changes in a
subsequent patch. Agreement between the two inspectors was
computed using Cohen’s Kappa () [15], which was measured
as 0.94 (almost perfect*). Conflicting labels were resolved
during a discussion session. At the end of this step, we
identified total 516 code reviews that successfully identified
security vulnerabilities.

4Cohen’s Kappa values are interpreted as following: 0 - 0.20 as slight, 0.21
- 0.40 as fair, 0.41 - 0.60 as moderate, 0.61 - 0.80 as substantial, and 0.81 -
1 as almost perfect agreement

D. Building a dataset of controls (i.e. vulnerabilities escaped
during code reviews)

We searched the Monorail-based bug tracking system hosted
at: https://bugs.chromium.org/, to identify a list of security
defects for the Chromium OS project. We used the bug tracker
instead of the CVE database, since the bug tracker includes
more detailed information for each security defect (e.g., link
to fixing commit and link to Gerrit where the fix was code
reviewed). Moreover, some of the security defects may not be
reported in the CVE, if it was identified during testing prior
to its public release. We used the following five-step approach
to build this dataset. We also illustrate this process using an
example security defect: #935175.

(Step 1) Custom search: We use a custom search (i.e.,
(Type=Bug-Security status:Fixed 0OS=Chrome),
to filter security defects for the Chromium OS projects
with the status as ‘Fixed’. Our search result identified total
591 security defects. We exported the list of defects as a
comma-separated values( i.e., csv) file, where each issue is
associated with a unique ID.

(Step II) Identifying vulnerability  fixing commit:
The Monorail page for each ‘Fixed’ issue includes
detailed information (e.g., commit_id, owner, review

URL, list of modified files, and reviewer) regarding its

fix. For example, http://crbug.com/935175 details the
information for the security defect #935175 including
the ID of the vulnerability fixing commit (i.e. ¢

560512399a5¢c2221bad4812£5170£3£8dc352cd74’).
We wrote a Python script to automate the extraction of
the review URLs and commit_ids for each security defect
identified in Step I. Finally, we excluded the security fixes
that were not reviewed on Chromium OS’s Gerrit repository
(e.g., third-party libraries). At the end of this step, we were
left with 239 security defects and its’ corresponding fixes.

(Step II1) Identifying vulnerability contributing commit(s):
We adopted the modified version of the SZZ algorithm [9]
to identify the vulnerability introducing commits from the
vulnerability fixing commits identified in Step II. Our modified
SZZ algorithm uses the git blame and git bisect
subcommands and is adopted based on the approaches fol-
lowed in two prior studies [38], [49] on VCCs. For each line
in a given file, the git blame subcommand names the
commit that last commit_id that modified it. The heuristics
behind our custom SZZ are as following:

1) Ignore changes in documentations such as release notes
or change logs.

2) For each deleted / modified, blame the line that was
deleted / modified, since if a fix needed to change a line,
that often means that it was part of the vulnerability.

3) For every continuous block of code inserted in the bug
fixing commit, blame the lines before and after the block,
since security fixes are often done by adding extra checks,
often right before an access or after a function call.

4) If multiple commits are marked based on the above steps,
mark commits as VCCs based on higher amount of lines
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Fig. 1. A vulnerability contributing commit (VCC) for the security defect #935175 and the code review that missed it

TABLE II
ATTRIBUTES OF A CODE REVIEW THAT MAY INFLUENCE IDENTIFICATION OF A VULNERABILITY
Type Name Definition Rationale
Number of files under re- | Number of files under review in a review request. Changes that involve greater number of files are more likely
Location view to be defect-prone [28], yet more time-consuming to review.
Number of directory un- | Number of directory where files have been modified in a | If the developers group multiple separate changes into a single
der review review request. commit, the review of those comprehensive changes could be
harder.
Code churn Number of lines added / modified / deleted in a code | Larger changes are more likely to have vulnerability [12],
review. [45], [46] and require more time to comprehend.
Lines of code Numbers of lines of code in the file before fix. Larger components are more difficult to understand.
Complexity McCabe’s Cyclomatic Complexity [33]. Difficulty to comprehend a file increases with its cyclomatic
complexity.
is_bug_fix Code review request that is submitted to fix a bug A bug fix review request may draw additional attention from
the reviewers, as bugs often foreshadow vulnerabilities [14]
Author’s coding experi- | Number of code commits the author has submitted (i.e., | Experienced authors’ code changes may be subject to less
Participant ence both accepted and rejected) prior to this commit. scrutiny and therefore may miss vulnerabilities during re-

views.

Reviewer’s reviewing ex-
perience

Number of code reviews that a developer has participated
as a reviewer (i.e., code not committed by him/her) prior
to this commit.

Experienced reviewers may be more likely to spot security
concerns.

Reviewer’s coding experi-
ence

Number of code commits that a reviewer has submitted
(i.e., both accepted and rejected) prior to this commit.

Experienced developers provide more useful feedback during
code review [13] and may have more security knowledge.

Review process

Review time

The time from the beginning to the end of the review
process. We define the review process to be complete
when the patchset is ‘Merged’ to the main project branch
or is ‘Abandoned’.

A cursory code review is more likely to miss security defects
that require thorough reviews.

Number of reviewers in-
volved (NRy)

Number of reviewers involved in reviewing file f

As Linus’s law suggest, the more eyeballs, the less likelihood
of a defect remaining unnoticed.

Historical

Review ratio (RRq, 1)

The ratio between the number of prior reviews from

developer a to a file f and the total number of prior

reviews to that file. If the developer a participated in i
K

of the r prior reviews in file f then: RR, 5 = =

T

A developer who has reviewed a particular file more may
have better understanding of its design.

Commit ratio (CR,,¢)

The ratio between the number of commits to a file f by
author @ and the total number of commits to that file. If

author a makes ¢ of the ¢ prior commits then CRq 5 =
. J

A developer who makes frequent changes in a file may have
better understanding of its design

Weighted recent commits
(Rca,f )

C

If a file f has total n prior commits and author a

makes three of three of the prior n commits (e.g., %, j, k),

where n denotes the latest commit, then: RC, ; =
(i+j+k) = 2(i+j+k)

(1+2+43+...4n) ~— n(ntl)

A developer who makes recent commits may have better
understanding about the current design.

Total commit

Total number of commits made on the current file

Files that have too many prior commits might require extra
attention from the reviewers.

Mutual reviews

Number of reviews performed by the current reviewer
and author

Better understanding about the author’s coding style might
help the reviewer to investigate defects.

Number of review com-
ments

Total number of review comments in the current file

Higher number of review comments indicate the file has gone
through a more detailed review.

File ownership (FOgq,¢)

The ratio between the number of lines modified by

a developer and total number of lines in that file. If

developer a writes 4 of total n lines in file f, then F'Oq, ¢
K

n

The owner of a file may be better suited to review that file.




until at least 80% lines are accounted for.

We manually inspect each of the VCCs identified by our
modified SZZ algorithm as well as corresponding vulnerability
fixing commits to exclude unrelated commits or include addi-
tional relevant commits. At the end of this step, we identified
total 374 VCCs. Figure 1 shows a VCC for the security defect
#935175 identified through this process.

(Step 1V) Identifying code reviews that approved VCCs: A
git repository mirror for the Chromium OS project is hosted
at https://chromium.googlesource.com/ with a gitiles® based
frontend. We used the REST API of gitiles to query this
repository to download commit logs for each VCC identified in
the previous step. Using a REGEX parser, we extract the URLs
of the code review requests that approved VCCs identified in
Step III. For example, Figure 1 also includes the URL of the
code review that missed the security defect #935175. At the
end of this step, we identified total 374 code reviews that
approved our list of VCCs.

(Step V) CWE classification of the VCCs: 124 out of the
374 VCCs in our dataset had a CVE reported in the NIST
NVD database® For example CVE-2019-5794 corresponds
to the security defect #935175. For such VCCs, we ob-
tained the CWE classification from the NVD database. For
example, NVD classifies #935175 as a ‘CWE-20: Improper
Input Validation’. For the remaining 250 VCCs, two of the
authors independently inspected each VCC as well as its fixing
commits to understand the coding mistake and classify it
according to the CWE specification. Conflicting labels were
resolved through discussions.

E. Attribute Collection

To answer the research questions motivating this study, we
computed 18 attributes for each of the 890 code reviews (i.e.
516 cases + 374 controls). Majority of the attributes selected
in this study have been also used in prior studies investigating
the relationship between software quality and code review
attributes [28], [29], [36], [55]. Table II presents the list of
our attributes with a brief description and rationale behind
the inclusion of each attribute to investigate our research
objectives. Those attributes are grouped into four categories: 1)
vulnerability location, 2) participant characteristics, 3) review
process, 4) historical measures. We use several Python scripts
and SQL queries to calculate those attributes from our curated
dataset and our MySQL database of Chromium OS code
reviews.

IV. RESULTS

Following subsections detail the results of the two research
question introduced in the Section I based on our analyses of
the collected dataset.

Shttps://gerrit.googlesource.com/gitiles/
Shttps://nvd.nist.gov/

A. RQI: Which categories of security defects are more likely
to be missed during code reviews?

For both identified and escaped security defects cases, we
either obtained a CWE classification from the NVD database
or manually assign one for those without any NVD reference.
The 890 VCCs (i.e., both identified and escaped cases) in our
dataset represented 86 categories of CWEs. However, for the
simplicity of our analysis, we decreased the number of distinct
CWE categories by combining similar categories of CWEs
into a higher level category. The CWE specification already
provides a hierarchical categorization scheme’ to represent the
relationship between different categories of weaknesses. For
example, both CWE-190 (Integer Overflow or Wraparound)
and CWE-468 (Incorrect Pointer Scaling) belong to the higher
level category: CWE-682 (Incorrect Calculation). Using the
higher level categories from the CWE specification [41], we
reduce the number of distinct CWE types in our dataset to
15. During this higher level classification, we also ensured
no common descendants among these final 15 categories.
Table III shows the fifteen CWE categories represented in
our dataset, their definitions, and both the number and ratios
of identified /escaped cases, in a descending order based on
their total number of appearances.

The results of a Chi-Square (y?) test suggest that some
categories of CWEs are significantly (x?=491.69, p—value <
0.001) more likely to remain undetected during code reviews
than the others. Chromium OS reviewers were the most
efficient in identifying security defects due to ‘CWE-676:
Use of potentially dangerous function’. For example, follow-
ing C functions are strcpy (), strcat (), strlen(),
strcmp (), sprintf () unsafe as they do not check for
buffer length and may overwrite memory zone adjacent to the
intended destination. As the identification of a CWE-676 is
relatively simple and does not require much understanding of
the associated context, no occurrences of dangerous functions
escaped code reviews. Reviewers were also highly efficient
in identifying security defects due to ‘CWE-404: Improper re-
source shut down or release’ that can lead to resource leakage.
‘CWE 682: Incorrect calculation’, which includes calculation
of buffer size and unsecured mathematical operation (i.e., large
addition/multiplication or divide by zero), were also more
likely to be identified during code reviews (~280%). The other
categories of CWEs that were more likely to be identified
during code reviews include: improper exception handling
(CWE-703) and synchronization mistakes (i.e., CWE- 662,
and CWE-362).

On the other hand, Chromium OS reviewers were the
least effective in identifying security defects due to insuf-
ficient verification of data authenticity (CWE-345), as all
such occurrences remained undetected. Insufficient verification
of data can lead to an application accepting invalid data.
Although Improper input validations (CWE-20) were frequent
occurrences (i.e., 72), those remained undetected during ~88%
code reviews. Improper input validation can lead to many

7https://cwe.mitre.org/data/graphs/1000.html



critical problems such as uncontrolled memory allocation and
SQL injection. Approximately 88% security defects caused
by improper access control (CWE-284) also remained unde-
tected as reviewers were less effective in identifying security
issues due to improper authorization and authentication, and
improper user management. The other categories of CWEs that
were more likely to remain unidentified during code reviews
include: operation on a resource after expiration or release
(CWE-672) and exposure of resources to wrong spheres
(CWE-668).

Our manual examinations of the characteristics of these
CWE categories suggest that security defects that can be
identified based on a few lines of the code context (e.g.,
unsafe method, calculation of buffer size, and resource release)
are more likely to be identified during code reviews. On
the other hand, Chromium OS reviewers were more likely
to miss CWEs requiring either code execution (e.g., input
validation) or understanding of larger code contexts (e.g.,
resource lifetime, and authentication management ).

Finding 1: The likelihood of a security defect’s identifica-
tion during code reviews depends on its CWE category.

Observation 1(A): Security defects related to the synchro-
nization of multi-threaded application, calculation of vari-
able and buffer size, exception handling, resource release,
and usage of prohibited functions were more likely to be
identified during code reviews.

Observation 1(B): Security defects related to the user input
neutralization, access control, authorization and authentica-
tion management, resource lifetime, information exposure,
and datatype conversion were more likely to remain unde-
tected during code reviews.

B. RQ2: Which factors influence the identification of security
defects during a code review?

To investigate this research question, we developed a lo-
gistic regression model. Logistic regression is very efficient
in predicting a binary response variable based one or more
explanatory variables [7]. In this study, we use the factors
described in the Table II as our explanatory variables, while
our response variable is a boolean that is set to TRUE, if a
code review’s security defect was identified by reviewer(s) and
FALSE otherwise.

Being motivated by recent Software Engineering studies
[37], [55], we adopt the model construction and analysis ap-
proach of Harrell Jr. [22], which allows us to model nonlinear
relationships between the dependent and explanatory variables
more accurately. The following subsections describe our model
construction and evaluation steps.

1) Correlation and Redundancy Analysis: 1f the explana-
tory variables to construct a model are highly correlated with
each other, they can generate a overfitted model. Following,
Sarle’s VARCLUS (Variable Clustering) procedure [51], we
use the Spearman’s rank-order correlation test (p) [54] to
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Fig. 2. Hierarchical clustering of explanatory variables according to Spear-
man’s |p| and Sarle’s VARCLUS. The dashed line indicates the high correla-
tion coefficient threshold (|p| = 0.7)

determine highly correlated explanatory variables and con-
struct a hierarchical representation of the variable clusters
(Figure 2). We retain only one variable from each cluster of
highly correlated explanatory variables. We use |p > 0.7| as
our threshold, since it has been recommended as the threshold
for high correlation [24] and has been used as the threshold
in prior SE studies [37], [55].

We found four clusters of explanatory variables that have
|p| > 0.7 = (1) total lines of code (f0oralLOC) and number
of commits (totalCommit), (2) commit ratio, weighted recent
commit, and file ownership, (3) reviewer’s coding experience
and reviewer’s reviewing experience, (4) amount of code
churn, directory under review, and number of files under
review. From the first cluster, we select total number of commit
in the file. From the second cluster, we select file ownership.
From the third and fourth cluster, we select reviewer’s review-
ing experience and number of directory under review respec-
tively. Despite not being highly correlated, some explanatory
variables can still be redundant. Since redundant variables
can affect the modelled relationship between explanatory and
response variables, we use the redun function of the rms R
package with the threshold 22 > 0.9 [19] to identify potential
redundant factors among the remaining 12 variables and found
none.

2) Degrees of Freedom Allocation: A model may be overfit-
ted, if we allocate degrees of freedom more than a dataset can
support (i.e., number of explanatory variables that the dataset
can support). To minimize this risk, we estimate the budget
for degrees of freedom allocation before fitting our model.
As suggested by Harrell Jr. [22], we consider the budget for
degrees of freedom to be %gm where T represents the
number of rows in the dataset where the response variable
is set to TRUE and F represents the number of rows in the
dataset where the response variable is set to FALSE. Using this
formula, we compute our budget for degrees of freedom = 24,
since our dataset has 516 TRUE instances and 374 FALSE
instances.

For maximum effectiveness, we allocate this budget among



TABLE III
DISTRIBUTION OF CHROMIUM OS CWES IDENTIFIED /ESCAPED CODE REVIEWS

CWE ID | CWE Definition #ldentified | %]Identified | #Escaped | %Escaped
662 | Improper Synchronization 109 89.34 13 10.66
362 | Concurrent Execution using Shared Resource with Improper Synchronization 73 87.95 10 12.05

(’Race Condition”)

682 | Incorrect Calculation 65 79.27 17 20.73

20 | Improper Input Validation 9 11.11 72 88.89
703 | Improper Check or Handling of Exceptional Conditions 58 72.50 22 27.50
404 | Improper Resource Shutdown or Release 71 94.67 4 5.33
284 | Improper Access Control 8 12.12 58 87.88
672 | Operation on a Resource after Expiration or Release 3 4.62 62 95.38
119 | Improper Restriction of Operations within the Bounds of a Memory Buffer 42 72.41 16 27.59
676 | Use of Potentially Dangerous Function 53 100.0 0 0.0
668 | Exposure of Resource to Wrong Sphere 15 30.0 35 70.0
704 | Incorrect Type Conversion or Cast 1 5.88 16 94.12
345 | Insufficient Verification of Data Authenticity 0 0.0 13 100.0
665 | Improper Initialization 5 50.0 5 50.0

19 | Data Processing Errors 0 0.0 10 100.0

all the survived explanatory variables in such a way that the
variables that have more explanatory powers (i.e., explana-
tory variables that have more potential for sharing nonlinear
relationship with the response variable) to be allocated with
higher degrees of freedom than the explanatory variables
that have less explanatory powers. To measure this potential,
we compute Spearman rank correlations (p?) between the
dependent variable and each of the 12 surviving explanatory
variables (Figure 3). Based on the results of this analysis, we
split the explanatory variables into two groups— (1) we allocate
three degrees of freedom to three variables, i.e., number of
directory under review, review ratio, and reviewer’s reviewing
experience, and (2) we allocate one degree of freedom for
the remaining nine variables. Although isBugFix has higher
potential than reviewer’s reviewing experience, we cannot
assign more than one degree of freedom for isBugFix as it
is dichotomous. As suggested by Harrell Jr. [22], we limit
the maximum allocated degree of freedom for an explanatory
variable below five to minimize the risk of overfitting.

3) Logistic Regression Model Construction: After elimi-
nating highly correlated explanatory variables and allocating
appropriate degrees of freedom to the surviving explanatory
variables, we fit a logistic regression model using our dataset.
We use the rcs function of the rms R package [19] to fit
the allocated degrees of freedom to the explanatory variables.

4) Model Analysis: After model construction, we analyze
the fitted model to identify the relationship between the
response variable and each of the explanatory variables. We
describe each step of our model analysis in the following.

Assessment of explanatory ability and model stability: To
assess the performance of our model, we use Area Under
the Receiver Operating Characteristic (AUC) curve [21]. Our
model achieves an AUC of 0.914. To estimate how well the
model fits our dataset, we calculate Nagelkerke’s Pseudo R?

[4718. Our model achieves a R? value of 0.6375, which is
considered to be a good fit [47].

Power of explanatory variables estimation: We use the
Wald statistics (Wald x?) to estimate the impact of each
explanatory variable on the performance our model. We use
the anova function of the rms R package to estimate the
relative contribution (Wald x2) and statistical significance (p)
of each explanatory variable to the model. The larger the
Wald 2 value is, the more explanatory power the variable
wields on our model. The results of our Wald x? tests (Table
IV) suggest that number of directory under review wields the
highest predictive power on the fitted model. ReviewRatio,
isBugFix, ReviewerReviewingExperience, and TotalCommit are
the next four most significant contributors. Number of review
comments, number of mutual reviews, cyclomatic complexity
of the file, and review time also wield significant explana-
tory powers. However, experience of code author, number of
reviewers involved in the review process, and proportion of
ownership of the file do not contribute significantly on the
fitted model.

We use the summary function of the RMS R package to
analyze our model fit summary. Table IV also shows the
contributions of each explanatory variable to fit our model
using the ‘deviance reduced by’ values. For a generalized
linear model, deviance can be used to estimate goodness /
badness of fit. A higher value of residual deviance indicates
worse fit and a lower value indicates the opposite. A model
with a perfect fit would have zero residual deviance. The
NULL deviance value, which indicates how well the response
variable is predicted by a model that includes only one
intercept (i.e., the grand mean), is estimated as 1211.05 for
our dataset. The deviance of a fitted model decreases once
we add explanatory variables. This decrement of residual

8For Ordinary Least Square (OLS) regressions, Adjusted R? is used
to measure a model’s goodness of fit. Since it is difficult to compute
Adjusted R? for a logistic regression model, the Pseudo R? is commonly
used to measure its goodness of fit. The advantage of using Nagelkerke’s
Pseudo R? is that it’s range is similar to the Adjusted R? range used for
OLS regressions [53].



deviance would higher for a variable with higher predictive
power than for a variable with lower predictive power. For
example, the explanatory variable “directory_under_review”,
which has the highest predictive power, reduces the residual
deviance by 195.701 with a loss of three degrees of freedom.
We can imply that the variable “directory_under_review” adds
1oL x 100% = 16.16% explanatory power to fit the
model. Similarly, “reviewers_experience” reduces the residual
deviance by 104.104 with a loss of three degrees of freedom.
Therefore, “reviewers_experience” adds }gzll.ﬁgg x 100% =
8.6% explanatory power to fit the model. Overall, our ex-
planatory variables decrease the deviance by 571.73 with a
loss of 17 degrees of freedom. Hence, we can imply that
our explanatory variables add 1527111'2)45 x 100% = 47.21%
explanatory power to fit the model which can be considered

as a significant improvement over the null model.

Examination of variables in relation to response: Since
Odds Ratio (OR) is recommended to measure the strength
of relationship between an explanatory variable and the out-
come [52], we compute the OR of each explanatory variable
in our fitted model (Table IV) using 95% confidence interval.
In this study, the OR of an explanatory variable implies how
the probability of getting a true outcome (i.e., a vulnerabil-
ity getting identified) increases with a unit change of that
variable. Therefore, an explanatory variable with OR > 1
would increase the probability of a security defect getting
identified during code reviews with its increment and vice
versa. Since the explanatory variables used in our model have
varying ranges (i.e., while ‘number of directory under review’
varies between from 1 to 10, the ‘reviewing experience’
varies between 0 to several hundreds), we cannot draw a
generic conclusion by comparing the numeric OR value of an
explanatory variable against the OR of another variable that
has a different range.

Table IV shows that the OR of ‘number of directory under
review’ is 0.76 (i.e. < 1), indicating that, if the ‘number of
directory under review’ increases, a code review is more likely
to miss a security defect. On the other hand, the odds ratio
of the variables ReviewRatio and IsBugFix are well above 1,
which imply that if the review request is marked as a bug
fix commit or the review conducts a significant number of
prior review to that file, the security defect is more likely
to be identified during code review. Since IsBugFix is a
dichotomous variable, interpretation of its OR value (4.55)
is straightforward. It indicates that vulnerabilities in a bug
fix commit were 4.55 times more likely to be identified
during code reviews than a non-bug fix commit. The results
also suggest positive impact of review time on vulnerability
identification. Surprisingly, the overall reviewing experience
of a developer does not increase his/her ability to identify
security defects.

Spearman p2 Response : is_identified

NumOfDirectoryUnderReview o
ReviewRatio o
IsBugFix o
ReviewerReviewingExperience o
TotalCommit o
AuthorCodingExperience o
NumOfReviewComments o
MutualReviews o
NumOfReviewersInvolved °
Complexity o
ReviewTime o
FileOwnership )

0.05 0.10 0.15 0.20

Adjusted p?

Fig. 3. Dotplot of the Spearman multiple p? of each explanatory variable and
the response. The larger values of p? indicate higher potential for a nonlinear
relationship.

Finding 2: Our model has identified nine code review
factors that significantly differ between code reviews that
successfully identified security defects and those failed.
Number of directories impacted by a code change has the
most predictive power among those nine factors.

Observation 2(A): The probability of a vulnerability getting
identified during a code review decreases with the increase
in number of directories, number of prior reviews by the
reviewer, number of prior commits in the file, and number
of review comments authored on a file during the current
review cycle.

Observation 2(B): The probability of a vulnerability getting
identified during a code review increases with review time,
number of mutual reviews between the code author and a
reviewer, cyclomatic complexity of the file under review, if
the change belongs to a bug fix, and a reviewer’s number
of priors review with the file.

V. IMPLICATIONS

In this section, we describe the implications of our findings.

A. Findings from RQI

Table III suggests that reviewers detect CWE-662 and
CWE-362 in most of the cases. Both of the CWEs are related
to the security issues for multi-threaded applications (Improper
synchronization and race condition). Hence, we can infer that
Chromium OS developers have adequate expertise in securing
multi-threaded programs. Developers are also detecting issues
related to improper calculation of array buffer or variable size
in most of the cases which can overcome the possibility of
potential buffer and/or integer overflow/underflow. However,
identifying security issues with user input sanitization remains
a concern. Most of the issues related to improper input vali-
dation have been escaped during code review which can lead
to security vulnerabilities such as SQL injection attack, cross-
site scripting attach, and IDN holograph attack. Chromium
OS project manager may tackle this problem in two possible
ways. First, they may leverage additional quality assurance



TABLE IV
EXPLANATORY POWERS OF THE CODE REVIEW ATTRIBUTES TO PREDICT THE LIKELIHOOD OF A VULNERABILITY TO BE IDENTIFIED DURING CODE

REVIEWS

Allocated D.F. | Deviance | Residual Deviance | Deviance Reduced By (%) | Odds Ratio Pr(>Chi)
NULL 1211.05
NumOfDirectoryUnderReview 3 195.70 1015.35 16.16 0.76 | <0.001%**%*
ReviewerReviewingExperience 3 104.10 911.25 8.60 0.99 | <0.001%**
ReviewRatio 3 85.49 825.76 7.06 1.83 | <0.001%**
IsBugFix 1 67.14 758.62 5.54 4.55 | <0.001%**
Total Commit 1 40.03 718.59 3.30 0.97 | <0.001%*%*%*
NumOfReviewComments 1 26.56 692.03 2.19 0.98 | <0.001%*%**
ReviewTime 1 23.86 668.17 1.97 1.01 | <0.001%**
MutualReviews 1 14.95 653.22 1.23 1.01 | <0.001%**
Complexity 1 12.17 641.05 1.01 .12 | <0.001%**
AuthorCodingExperience 1 0.95 640.10 0.08 0.99 0.33
FileOwnership 1 0.60 639.50 0.05 1.52 0.44
NumOfReviewersInvolved 1 0.18 639.32 0.02 1.04 0.67
Total 18 571.73 47.21%

Statistical significance of explanatory power according to Wald x? likelihood ratio test:

*p <0.05; ** p <0.01; ** p <0.001;

practices, such as static analysis, fuzzy testing that are known
to be effective in identifying these categories of vulnerabilities.
Second, education / training materials may be provided to
reviewers to improve their knowledge regard these CWEs.

B. Findings from RQ2

Herzig and Zeller find that when developers commit loosely
related code changes that affect all related modules, the like-
lihood of introducing bug increases [23]. Such code changes
are termed as tangled code changes. Our study also finds that
if the code change affects multiple directories, the security
defect is more likely to escape code review. Reviewing tan-
gled code changes can be challenging due to difficulties in
comprehension. To tackle this issue we recommend: 1) trying
to avoid code changes dispersed across a large number of
directories, when possible, 2) spending additional time during
such changes as our results also suggest positive impact of
review time on vulnerability identification, and 3) integrate a
tool, such as the one proposed by Barnett et al. [4] to help
reviewers navigate tangled code changes.

Our results also suggest that Chromium OS reviewers,
who have participated in higher number of code reviews for
were less likely to identify security defects. There may be
several possible explanations for this result. First, developers
who participates in a large number of reviews may become
less cautious (i.e., review fatigue) and miss security defects.
Second, developers who review lot of changes may have to
spend less time per review, as code reviews are considered
as secondary responsibilities in most projects. Therefore, such
developers become less effective in identifying security defects
due to hasty reviews. Finally, identification of security defects
may require special skillsets that do not increase a developer’s
participation in non-security code reviews. While we do not
have a definite explanation, we would recommend project
managers to be more aware of ‘review fatigue’ and avoid
overburdening a person with a larger number of reviews.

The likelihood of file’s vulnerability escaping increases with
the total number of commit it has encountered during its

lifetime. A file with higher number of commits indicates more
frequent changes in that file than others due to bugs or design
changes. Since bugs often foreshadow vulnerabilities [14],
developers should be more cautious while reviewing files that
frequently go through modifications.

Interestingly, if a code change is marked as a bug fix,
developers are more likely to identify security defects (if
exists) during code reviews, which suggests extra cautions
during such reviews. Therefore, an automated model may be
used to predict and assign tags (e.g., ‘security critical’) to code
changes that are more likely to include vulnerabilities to draw
reviewers’ attentions and seek their cautiousness.

Unsurprisingly, the likelihood of a security defect getting
identified increases with review time (i.e., time to conclude a
review). Although, taking too much time to complete a review
would slow the development process, reviewers should make a
trade-off between time and careful inspection, and try to avoid
rushing reviews of security critical changes. The number of
mutual reviews between a pair of developers also has a positive
effect on the likelihood of security defect identification. When
two developers review each other’s code over a period of
time, they become more aware of each other’s coding styles,
expertise, strengths, and weaknesses. That awareness might
help one to pay attention to areas that he/she thinks the
other has a weakness or where he/she may make a mistake.
Since mutual reviews have positive impact, we recommend
promoting such relationships.

VI. THREATS TO VALIDITY

Since case control studies originate from the medical
domain,one may question whether we can use this study
framework to study SE research questions. We would like to
point out that prior SE studies have adopted various research
designs, such as systematic literature review, controlled ex-
periment, ethnography, and focus group that have originated
in other research domains. Although, the results of this study
do not rely on the case-control study framework, we decided
to use this design, since: 1) our study satisfies the criteria



for using this framework, and 2) following a established
methodological framework strengthens an empirical research
such as this study.

Our keyword-based mining technique to identify whether a
code review identifies security defect or not poses a threat to
validity. We may miss a security defect if the review comments
do not contain any of the keywords that we used. However, as
we are only considering those reviews that belong to security
defects and ignoring the rest, we are considering that false-
negative labeling of security defect will not make any impact
on our study. Nevertheless, as we manually check all the
security defects while assigning CWE ID, we find no false-
positive labelling a code review as related to security defect.

Another threat to is the categorization of CWE ID. As one
of our authors manually checks all the codes to find weakness
type and assign the best match CWE ID for each weakness,
that author might categorize a weakness with a wrong or less
suited CWE ID. To minimize the effect of this threat, another
author randomly chooses 200 source code files and manually
assign CWE ID following a similar process without knowing
the previously labeled CWE ID. We find that 194 out of 200
labels fall in the same group of CWE IDs that were labeled
earlier. So, we are considering that this threat will not make
any significant change in our results.

Another threat is the measure we take to calculate the
developer’s experience. We can interpret the term “experience”
in many ways. And in many ways, measuring of experience
will be complex. For example, we cannot calculate the amount
of contribution of a developer to other projects. Although a
different experience measure may produce different results,
we believe our interpretation of experience is reasonable as
that reflects the amount of familiarity with current project.

Finally, results based on a single project or even a handful
of projects can be subject to lack of external validity. Given
the manual work involved in the data collection process, it
is often infeasible to include multiple projects. Moreover,
historical evidence provides several examples of individual
cases that contributed to discovery in physics, economics, and
social science (see “Five misunderstandings about case-study
research” by Flyvjerg [20]). Even in the SE domain case
studies of the Chromium project [14], [17], Apache case study
by Mockus et al. [42], and Mozilla case study by Khomh et
al. [26] have provided important insights. To promote building
knowledge through families of experiments, as championed
by Basili [5], we have made our dataset and scripts publicly
available [48].

VII. RELATED WORK

Code review technologies are widely used in modern soft-
ware engineering. Almost all the large scale projects have
adopted peer code review practices with the goal of improving
product quality [50]. Researchers have justified the benefit
of code reviews to identify missed defects [6], [32]. Prior
studies also find that peer code review can be very effective in
identifying security vulnerability [12]. That is why developers
use 10-15% of their working hours in reviewing other’s code

[11]. However, despite the popularity and evidence in support,
some researchers explore that peer code reviews are not
always performed effectively, which decelerates the software
development process [16].

Despite putting lots of efforts in code review to keep
product secured, a significant number of security vulnerability
is reported every year and the number is ever-increasing.
Although some prior studies [6], [18] have questioned about
the effectiveness of peer code review in identifying security
vulnerabilities, they did not explore the factors that could be
responsible for this ineffectiveness. Researchers have intro-
duced several metrics of code reviews over time that can be
used to identify security vulnerability [2], [38], [39]. However,
they did not investigate the state of those attributes when code
review cannot identify security vulnerabilities.

Meneely and Williams find that the engagement of too
many developers to write a source code file can make that
file more likely to be vulnerable; termed that situation as “too
many cooks in kitchen” [40]. But, they do not explore what
characteristics of code review was responsible. Munaiah et al.
use natural language processing to get the insights from code
review that missed a vulnerability [44]. They investigate code
review comments of Chromium project and find that code re-
views that have discussions containing higher sentiment, lower
inquisitiveness, and lower syntactical complexity are more
likely to miss a vulnerability. To the best of our knowledge,
no prior study has sought to identify the difference in security
defects that are identified in code review and security defects
that are escaped. Also, no prior studies introduce attributes that
can be impactful in distinguishing code reviews where security
defects get identified and code reviews where security defects
get escaped.

VIII. CONCLUSION

In this case-control study, we empirically build two
datasets— a dataset of 516 code reviews where security defects
were successfully identified and a dataset of 374 code reviews
where security defects were escaped. The results of our
analysis suggest that the likelihood of a security defect’s iden-
tification during code reviews depends on its CWE category.
A logistic regression model fitted on our dataset achieved
an AUC score of 0.91 and has identified nine code review
attributes that influence identifications of security defects.
While time to complete a review, the number of mutual
reviews between two developers, and if the review is for a
bug fix have positive impacts on vulnerability identification,
opposite effects are observed from the number of directories
under review, the number of total reviews by a developer, and
the total number of prior commits for the file under review.
Based on the results of this study, we recommend: 1) adopting
additional quality assurance mechanisms to identify security
defects that are difficult to identify during code reviews,
2) trying to avoid tangled code changes when possible, 3)
assisting the reviewers to comprehend tangled code changes,
4) balancing review loads to avoid review fatigue, and 4)
promoting mutual reviewing relationship between developers.
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